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ABSTRACT

In the present study, the pH responsive electrospun carboxymethyl
chitosan nanofibers were prepared via electrospinning method and
cross-linked with glutaraldehyde vapor for various times up to 48 h. The
controlled release of 5-Fluorouracil (5-FU) from single layer and tri-
layered nanofibers (5-FU in the middle layer) was compared to obtain a
sustained delivery system of 5-FU anticancer drug. The release of 5-FU
from nanofibers was investigated at 37 °C under acidic pH (pH 5.5) and
physiological pH (pH 7.4). The release data were fitted by zero-order,
Higuchi and Korsmeyer-Peppas pharmacokinetic equations to determine
the 5-FU release mechanism from nanofibers. Tri-layered nanofibers
exhibited the sustained delivery of 5-FU without initial burst release
during 168 and 216 h at pH=5.5 and 7.4, respectively. The initial burst
release followed by sustained release of 5-FU from single layer cross-
linked carboxymethyl chitosan nanofibers occurred during 48 and 60 h.
The “n” constant of Korsmeyer-Peppas equation indicated the non Fickian
diffusion of 5-FU from single layer nanofibers at both pH values of 5.5, pH
7.4 and tri-layered nanofibers at pH 5.5. Whereas, the Fickian diffusion of
5-FU was occurred from tri-layered nanofibers at pH 7.4. The obtained
results indicated the high capability of tri-layered nanofibers for controlled
release of 5-FU compared to single layer nanofibers.
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INTRODUCTION

The nanofibers prepared by electrospinning
technique have been studied extensively for
use as drug carrier [1-6]. The various forms of
nanofibers such as core-sheath structure [7-9],
multi-layered structure [10-13], nanoparticles-
embedded nanofibers [14-17], and so on have
been developed to decrease the adverse effects
of drug-loaded single phase nanofibers with initial
burst release. The electrospining of multi-layered
nanofibers by the electrospinning method is easier
than core-shell nanofibers and nanoparticles-
embedded nanofibers. For instance, the multi-
layered nanofibers of gelatin and cross-linked with
glutaraldehyde (25% v/v aqueous solution) for
controlled release of piperine were fabricated [18].
A zero-order release up to 48 h was achieved. The
sustained release of oligomeric proanthocyanidin
from multi-layered polycaprolactone nanofibers
was achieved for 62 days against thrombosis
[19]. Multi layered nanofibrous scaffold from
polycaprolactone, alginate, and ZnO nanoparticles
as a wound healing patch were synthesized [20].

Natural polymers are broadly used in drug
delivery [21], gene therapy [22-25], and tissue
engineering due to their high biocompatibility
[26]. Chitosan and its derivates as pH responsive
polymers have been used for anticancer drugs
delivery systems [4, 27-30]. However, the use
of chitosan due to its lower solubility is limited.
Carboxymethyl chitosan (CMC) as a water-soluble
polymer has a better biocompatibility compared
to pure chitosan [31]. In recent studies, the
electrospun CMC nanofibers have been used for
biomedical applications such as drug delivery
and tissue engineering [32, 33]. However, the
electrospinning of pure CMC is difficult. The
various polymers such as polyvinyl alcohol (PVA),
polyethylene oxide (PEO) and so on were blended
with CMC solution to facilitate its electrospinning.
For instance, Ag nanoparticles were incorporated
into the PVA/CMC nanofibers to increase its
antimicrobial activity [34]. In another study,
the antimicrobial capability of PEO/CMC/Ag
composite nanofibers was investigated [35].
The PEO/CMC nanofibers were electrospun for
fruit fresh keeping [36]. The osteogenic activity
of PEO/CMC nanofibers was investigated [37].
Polycaprolactone/CMC nanofibers were used for
bone tissue engineering [38]. UiO-66 metal organic
framework nanoparticles were incorporated into
the PEO/CMC/polyurethane core-shell nanofibers
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against MCF-7 breast cancer cells [39]. CMC/
PCL/cobalt ferrite/Doxorubicin nanofibers were
synthesized with core-shell structure for breast
cancer treatment [40].

In this work, PEO/CMC nanofibers are prepared
via electrospinning method. Then, nanofibers are
cross-linked with glutaraldehyde to increase its
stability in phosphate-buffered saline (PBS). The
functional groups of CMC nanofibers before and
after crosslinking are characterized using FTIR
analysis. The degradation rate of nanofibers is
evaluated for 10 days in water and PBS. The tri-
layered nanofibers (5-FU in the middle layer) are
prepared and 5-FU release behavior from both
single layer and tri-layered nanofibers are studied
under both acidic pH and physiological pH. The
biocompatibility of synthesized nanofibers is also
investigated for possible use in vivo studies. The
aim of this study is to compare the controlled
release of 5-Fluorouracil (5-FU) from single layer
and tri-layered CMC nanofibers.

MATERIALS AND METHODS
Poly(ethylene oxide) (Mw:900 kDa, PEO)

supplied from  Sigma-Aldrich  (USA) and
N-Carboxymethyl chitosan (Mw:100-250
kDa, N-deacetylation295%, CMC) purchased

from NAI Hangzhou Co. (Hangzhou, China)
were used to fabricate PEO/CMC nanofibers.
Glutaraldehyde solution (25 wt. % in H,0, GTA)
was utilized as crosslinking agent. 5-Fluorouracil
(5-FU) anticancer drug was provided from Sigma-
Aldrich (USA). Fourier transform Infrared (FTIR)
spectroscopy was recorded by using of the Bruker-
Vector spectrometer ranging from 500-4000 cm™.
The morphology and fiber diameter of the surface
of the nanofibers was implemented by using of
a Scanning Electron Microscopy (SEM, VEGA /
TESCAN-XMU model) after their coating with
a thin layer of gold. UV-Vis spectroscopy (JAS.
CO V-530, Japan) at a A__ of 266 nm was used
to determine the concentration of the 5-FU. The
degradation rate of nanofibers was evaluated by
their soaking in PBS at pH values of 5.5 and 7.4 for
10 days followed by measuring their weight before
and after soaking.

Synthesis of PEO/CMC nanofibers and their
crosslinking

CMC/PEO solution was prepared by mixing 5
wt.% CMCand 10 wt.% PEO solutions under stirring
for 4 h (CMCto PEO ratio: 5:5v/v). 5wt.% CMCand
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10 wt.% PEO solutions were previously obtained
by adding predetermined amounts of CMC and
PEO in distilled water under stirring for 4 h and 2
h, respectively. The electrospinning conditions for
fabrication of single phase nanofibers were feeding
rate, voltage, distance and electrospinning time
of 0.5 mL/h, 25 kV, 15 cm, and 6 h, respectively.
To load 5-FU anticancer drug into the nanofibers,
the predetermined amounts of 5-FU (5 and 10
wt.% by weight of CMC/PEO solution w/w) were
added into the CMC/PEO solution under stirring
for further 5 h. Tri-layered nanofibers were
prepared by sequential electrospinning of CMC/
PEO, CMC/PEO/5-FU and CMC/PEO solutions
on an aluminum foil placed on the collector for
2h, 2h and 2h, respectively. The crosslinking of
nanofibrous samples was carried out by using GTA
saturated vapor (25% v/v aqueous solution) for 15
and 30 min.

Drug encapsulation efficiency, loading content,
release and pharmacokinetic studies

Drug encapsulation efficiency (DEE, %) and drug
loading content (DLC, g drug/g nanofibers) were
evaluated by its degradation in distilled water and
measuring the final content of drug in nanofibers

as follows:
DEE (%)= inal content of drugs in fibers

= x100 (1)
Initial content of drugs loaded —fibers

Final content of drugs in fibers 2)

DLC(mg/g)=
(mg /¢) weight of fibers

To measure drug release behavior from
nanofibers, drug-loaded nanofibers (2 cm x 3
cm of electropun nanofibers) were incubated in
50 mL of two PBS solutions under different pH
values of 5.5 (acidic pH) and 7.4 (physiological
pH) under stirring at 37 °C for 10 days to obtain
the 5-FU release profiles from nanofibers. The
release experiments were done three times and
the average values were reported.

The 5-FU release data were analyzed by using
of the zero-order, Higuchi [41], and Korsmeyer-
Peppas [42] pharmacokinetic models to obtain
the drug release mechanism from single and tri-
layered nanofibers.

RESULTS AND DISCUSSION
Characterization
SEM images from CMC/PEO and 5-FU loaded

Amirkabi Univarsky AI32100C 8 w 70 7608V X 30K

Amirkabir Universty

Fig. 1. SEM images from (a) PEO/CMC, (b) PEO/CMC/5-FU before crosslinking and (c) PEO/CMC, (d) PEO/
CMC/5-FU after crosslinking with GTA for 30 min.
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CMC/PEO nanofibers before and after crosslinking
with GTA are illustrated in Figure 1. As shown,
the homogeneous nanofibers with an average
diameter of 245 nm was obtained for CMC/PEO
nanofibers. By loading 5-FU into the nanofibers, a
gradualincreasein the fiber diameter was obtained
and the mean fiber diameter was increase to 270
nm. After crosslinking of nanofibers with GTA (30
min), the fiber diameters of both CMC/PEO and
CMC/PEO/5-FU have been increased from 245
and 270 nm to 345 and 390 nm, respectively. The
adhesion of some nanofibers together and linkage
of some pores of nanofibers resulted in increasing
nanofiber diameter after crosslinking.

The degradation rate of CMC/PEO/5-FU
nanofibers before and after crosslinking with GTA
under acidic and physiological pH is presented in
Figure 2. As shown, the mass loss percentage (%)
of CMC/PEO/5-FU nanofibers before crosslinking
was 100% after only 1 and 2 h under pH values
of 5.5 and 7.4, respectively. By crosslinking of
nanofbers with GTA for 15 min, the stability of
nanofibers was significantly improved and lower
than 40% and 50% of nanofibers were degraded
after 10 days at physiological and acidic pH values.
After crosslinking of nanofibers with GTA for 30
min, the mass loss percentage was found to be
lower than 10 % and 18% under pH values of 7.4
and 5.5, respectively. Therefore, nanofibers cross-
linked with GTA for 30 min was selected for further
experiments.

FTIR spectra of CMC/PEO before and after
crosslinking, 5-FU and CMC/PEQ/5-FU are

presented in Figure 3. For CMC/PEO, the detected
peaks at 3430 cm?, 2921 cm™, 1735 cm™, 1580
cm™, 1410 and 1072 cm™ were assigned to
the NH, groups, C-H stretching vibration, COO,
deforming NH, group, symmetric COO stretching
vibrations and C-O absorption peak, respectively.
After crosslinking of CMC with GTA, the C-O
absorption peak was shifted to 1088 ¢cm™ and
became stronger [43]. For 5-FU, the main peaks of
NH, C=0, C=C, C-F, C-N and pyrimidine compound
of 5-FU were detected at 3140 cm?, 1665 cm?,
1455 cm?, 1425 cm?, and 1340 cm™?, respectively.
The main peaks of both CMC/PEO and 5-FU were
detected in the FTIR spectrum of CMC/PEO/5-FU
nanofibers.

Drug loading efficiency, and drug loading content

The 5-FU drug loading content and 5-FU drug
encapsulation efficiency for 5-FU-loaded single
layer and tri-layered nanofibers with various initial
amounts of 5-FU (5 and 10 wt.% by weight of
polymer) are presented in Table 1. As shown, the
maximum drug encapsulation efficiency (DEE%)
was about 97.5+0.2% and 96.6+0.15% for tri-
layered CMC/PEO nanofibers containing 5% and
10% 5-FU. The maximum drug content was found
to be 96.6+1.5 mgg? for 10 wt.% 5-FU loaded-
nanofibers. Whereas, the maximum DEE for 5 wt.%
5-FU-loaded CMC/PEO single layer nanofibers was
about 88.2£0.5%. The lower DEE for single layer
nanofibers was due to washing of unattached 5-FU
molecules from nanofibers surface, Whereas, the
incorporation of 5-FU drug in the middle layer of

100 ¢
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60

Mass loss (%)

40

20

—e—Nanofibers crosslinked with GTA-15 min, pH:7.4
—e—Nanofibers crosslinked with GTA-15 min, pH:5.5
—e—Nanofibers crosslinked with GTA-30 min, pH:7.4
—s—Nanofibers crosslinked with GTA-30 min, pH:5.5

5 10 15 20
Incubation time (days)

Fig. 2. Degradation rate of CMC/PEO nanofibers cross-linked with GTA.
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CMC/PEO/5-FU nanofibers

2885

3435 360 g

Transmittance (%)

CMC/PEO after crosslinkj

CMC/PEQ before crosslinking

3430

1645 32
15501
1420

122

1460 1011
1145

/ 1340

1663
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Fig. 3. FTIR spectra of CMC/PEQ before and after crosslinking, 5-FU and CMC/PEO/5-FU nanofibers.

tri-layered nanofibers resulted in higher DLL and
DLC for 5-FU loaded-tri-layered nanofibers. The
obtained results demonstrated the high capability
of nanofibers for loading of high amounts of 5-FU
molecules.
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Drug release and pharmacokinetic studies

The 5-FU release from single layer and tri-
layered nanofibers containing 5% and 10% 5-FU
under pH values of 5.5 and 7.4 is illustrated in
Figure 4. As can be seen, the increase in pH from
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Table 1. Drug loading efficiency and drug loading content of synthesized CMC/PEO nanofibers (n=5)

Nanofibrous sample DOX concentration (%) DEE (%) DLC (mg/g)
Single layer nanofibers 5 88.20£0.50 44.1040.25
10 85.40+0.60 85.4016.00

Tri-layered nanofibers 5 97.5040.20 48.7540.10
10 96.60+0.15 96.60+1.50

@)
100
90
80
= 70
<
< 60
; S0
e
= 40
=
w30 CMC/PEO single layer, 5 WT.% S-FU, pH 7.4
20 ——CMC/PEO single layer, S WT.% 5-FU, pH:5.5
10 3 ——CMC/PEO tri layers, 5§ WT.% 5-FU, pH:7.4
——CMC/PEO tri layers, 5§ WT.% 5-FU, pH:5.5
0

(b)

S-I'Urelease (%)
th
(=]

CMC/PEO single layer, 10 WT.% 5-FU, pH 7.4
—+— CMC/PEO single layer, 10 WT.% 5-FU, pH:5.5
——CMC/PEO tri layers, 10 WT.% SFU,pH:7.4
——CMC/PEO tri layers, 10 WTI.% S5 FU, pH:5.5

0 50 100 200

Releasetime (h)

150

0 50 100 200

Releasetime (h)

150

Fig. 4. Cumulative release of 5-FU from nanofibers containing (a) 5 wt.% 5-FU and (b) 10 wt.% 5-FU.

Table 2. Pharmacokinetic parameters of 5-FU release from nanofibers.

Zero-order Higuchi Korsmeyer-Peppas
Nanofibrous carrier pH Ko Kn
R? R? n Kkp R?
(hr?) (hro5)

CMCPEO single layer, 5 wt.% 5-FU 7.4 0.2546 0.968 3.215 0.955 0.652 2.66 0.992
5.5 0.2895 0.965 3.652 0.952 0.721 2.85 0.991

CMCPEO single layer, 10 wt.% 5-FU 7.4 0.2651 0.975 3.512 0.960 0.699 2.72 0.990
5.5 0.2987 0.971 4.012 0.959 0.755 2.92 0.994

CMCPEO tri layers, 5 wt.% 5-FU 7.4 0.2015 0.955 2.952 0.958 0.378 2.12 0.993
5.5 0.2145 0.954 3.111 0.960 0.541 2.35 0.992

CMCPEO tri layers, 10 wt.% 5-FU 7.4 0.2085 0.951 3.015 0.958 0.395 2.23 0.992
5.5 0.2201 0.949 3.245 0.961 0.568 2.40 0.993

5.5 to 7.4 resulted in a slower release of 5-FU
from both single layer and tri-layered nanofibers.
On the other hand, the initial burst release of
5-FU from single layer nanofibers was obtained.
Whereas, the sustained release of 5-FU without
initial burst release was achieved for 5-FU- loaded
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tri-layered nanofibers and release was begun after
12 h. Thus, the fastest release was achieved at pH
5.5 from single layer nanofibers. The 5-FU release
from single layer and tri-layered nanofibers was
occurred after 48 h, 60 h, and 168 h, 216 h at pH of
5.5, and 7.4, respectively. The increase in the 5-FU
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content in nanofibers resulted in the faster release
of 5-FU from nanofibers due to the lower distance
between the 5-FU molecules in the nanofibers
matrix by increasing 5-FU concentration. The
faster release of 5-FU from single layer nanofibers
compared to tri-layered nanofibers could be
attributed to the easier diffusion of 5-FU molecules
from single layer nanofibers. The weakness of
some functional groups of CMC/PEO nanofibers
(carboxyl groups) resulted in the faster release of
5-FU from nanofibers at pH 5.5 compared to the
5-FU release at pH 7.4.

The comparison of correlation coefficients
of pharmacokinetic models indicated that the
Korsmeyer-Peppas model (R?> > 0.99) was best
described the 5-FU release data (Table 2). The “n”
constant of Korsmeyer-Peppas equation indicated
the non Fickian diffusion of 5-FU from single layer
nanofibers at both pH values of 5.5, pH 7.4 and tri-
layered nanofibers at pH 5.5. Whereas, the Fickian
diffusion of 5-FU was occurred from tri-layered
nanofibers at pH 7.4.

CONCLUSION

CMC/PEO single layer and tri-layered nanofibers
were successfully fabricated via electrospinning
method and cross-linked with GTA. The crosslink
of nanofibers with GTA for 30 min resulted in
fabricating of stable nanofibers with lower than
10 wt.% mass loss after 10 days. Whereas, the
pure CMC/PEO nanofibers without crosslinking,
degraded after only 2 h. After crosslinking of
nanofibers with GTA (30 min), the fiber diameters
of both CMC/PEO and CMC/PEO/5-FU have been
increased from 245 and 270 nm to 345 and 390
nm, respectively. FTIR spectra of nanofibrous
samples demonstrated the physical loading of 5-FU
anticancer drug into the nanofibers. The maximum
DEE% was about 97.5+0.2% for tri-layered CMC/
PEO nanofibers containing 5 wt.% 5-FU. Whereas,
the maximum DEE for 5 wt.% 5-FU-loaded CMC/
PEO single layer nanofibers was about 88.2+0.5%.
The 5-FU release from single layer and tri-layered
nanofibers was occurred after 48 h, 60 h, and
168 h, 216 h at pH of 5.5, and 7.4, respectively.
Korsmeyer-Peppas model best described the 5-FU
release data from both single layer and tri-layered
nanofibers.
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